Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Epidemiol Prev ; 47(3): 125-136, 2023.
Artículo en Italiano | MEDLINE | ID: covidwho-2318464

RESUMEN

BACKGROUND: after the outbreak of the SARS-CoV-2 pandemic in 2020, several waves of pandemic cases have occurred in Italy. The role of air pollution has been hypothesized and investigated in several studies. However, to date, the role of chronic exposure to air pollutants in increasing incidence of SARS-CoV-2 infections is still debated. OBJECTIVES: to investigate the association between long-term exposure to air pollutants and the incidence of SARS-CoV-2 infections in Italy. DESIGN: a satellite-based air pollution exposure model with 1-km2 spatial resolution for entire Italy was applied and 2016-2019 mean population-weighted concentrations of particulate matter < 10 micron (PM10), PM <2.5 micron (PM2.5), and nitrogen dioxide (NO2) was calculated to each municipality as estimates of chronic exposures. A principal component analysis (PCA) approach was applied to 50+ area-level covariates (geography and topography, population density, mobility, population health, socioeconomic status) to account for the major determinants of the spatial distribution of incidence rates of SARS-CoV-2 infection. Detailed information was further used on intra- and inter-municipal mobility during the pandemic period. Finally, a mixed longitudinal ecological design with the study units consisting of individual municipalities in Italy was applied. Generalized negative binomial models controlling for age, gender, province, month, PCA variables, and population density were estimated. SETTING AND PARTICIPANTS: individual records of diagnosed SARS-2-CoV-2 infections in Italy from February 2020 to June 2021 reported to the Italian Integrated Surveillance of COVID-19 were used. MAIN OUTCOME MEASURES: percentage increases in incidence rate (%IR) and corresponding 95% confidence intervals (95% CI) per unit increase in exposure. RESULTS: 3,995,202 COVID-19 cases in 7,800 municipalities were analysed (total population: 59,589,357 inhabitants). It was found that long-term exposure to PM2.5, PM10, and NO2 was significantly associated with the incidence rates of SARS-CoV-2 infection. In particular, incidence of COVID-19 increased by 0.3% (95%CI 0.1%-0.4%), 0.3% (0.2%-0.4%), and 0.9% (0.8%-1.0%) per 1 µg/m3 increment in PM2.5, PM10 and NO2, respectively. Associations were higher among elderly subjects and during the second pandemic wave (September 2020-December 2020). Several sensitivity analyses confirmed the main results. The results for NO2 were especially robust to multiple sensitivity analyses. CONCLUSIONS: evidence of an association between long-term exposure to ambient air pollutants and the incidence of SARS-CoV-2 infections in Italy was found.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , COVID-19 , Humanos , Anciano , Incidencia , Dióxido de Nitrógeno/efectos adversos , Exposición a Riesgos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/análisis , COVID-19/epidemiología , SARS-CoV-2 , Italia/epidemiología , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/análisis , Material Particulado/efectos adversos , Material Particulado/análisis
2.
PeerJ ; 11: e14489, 2023.
Artículo en Inglés | MEDLINE | ID: covidwho-2203235

RESUMEN

Background: Coronavirus disease has affected the entire population worldwide in terms of physical and environmental consequences. Therefore, the current study demonstrates the changes in the concentration of gaseous pollutants and their health effects during the COVID-19 pandemic in Delhi, the national capital city of India. Methodology: In the present study, secondary data on gaseous pollutants such as nitrogen dioxide (NO2), carbon monoxide (CO), sulfur dioxide (SO2), ammonia (NH3), and ozone (O3) were collected from the Central Pollution Control Board (CPCB) on a daily basis. Data were collected from January 1, 2020, to September 30, 2020, to determine the relative changes (%) in gaseous pollutants for pre-lockdown, lockdown, and unlockdown stages of COVID-19. Results: The current findings for gaseous pollutants reveal that concentration declined in the range of 51%-83% (NO), 40%-69% (NOx), 31%-60% (NO2), and 25%-40% (NH3) during the lockdown compared to pre-lockdown period, respectively. The drastic decrease in gaseous pollutants was observed due to restricted measures during lockdown periods. The level of ozone was observed to be higher during the lockdown periods as compared to the pre-lockdown period. These gaseous pollutants are linked between the health risk assessment and hazard identification for non-carcinogenic. However, in infants (0-1 yr), Health Quotient (HQ) for daily and annual groups was found to be higher than the rest of the exposed group (toddlers, children, and adults) in all the periods. Conclusion: The air quality values for pre-lockdown were calculated to be "poor category to "very poor" category in all zones of Delhi, whereas, during the lockdown period, the air quality levels for all zones were calculated as "satisfactory," except for Northeast Delhi, which displayed the "moderate" category. The computed HQ for daily chronic exposure for each pollutant across the child and adult groups was more than 1 (HQ > 1), which indicated a high probability to induce adverse health outcomes.


Asunto(s)
Contaminantes Atmosféricos , COVID-19 , Contaminantes Ambientales , Ozono , Lactante , Adulto , Humanos , COVID-19/epidemiología , Contaminantes Atmosféricos/efectos adversos , Material Particulado/análisis , Dióxido de Nitrógeno/efectos adversos , Pandemias , Control de Enfermedades Transmisibles , Ozono/efectos adversos
3.
J Korean Med Sci ; 37(39): e290, 2022 Oct 10.
Artículo en Inglés | MEDLINE | ID: covidwho-2065447

RESUMEN

BACKGROUND: In some patients, coronavirus disease 2019 (COVID-19) is accompanied by loss of smell and taste, and this has been reportedly associated with exposure to air pollutants. This study investigated the relationship between the occurrence of chemosensory dysfunction in COVID-19 patients and air pollutant concentrations in Korea. METHODS: Information on the clinical symptom of chemosensory dysfunction, the date of diagnosis, residential area, age, and sex of 60,194 confirmed COVID-19 cases reported to the Korea Disease Control and Prevention Agency from January 20 to December 31, 2020 was collected. In addition, the daily average concentration of air pollutants for a week in the patients' residential area was collected from the Ministry of Environment based on the date of diagnosis of COVID-19. A binomial logistic regression model, using age and gender, standardized smoking rate, number of outpatient visits, 24-hour mean temperature and relative humidity at the regional level as covariates, was used to determine the effect of air pollution on chemosensory dysfunction. RESULTS: Symptoms of chemosensory dysfunction were most frequent among patients in their 20s and 30s, and occurred more frequently in large cities. The logistic analysis showed that the concentration of particulate matter 10 (PM10) and 2.5 (PM2.5) up to 2 days before the diagnosis of COVID-19 and the concentration of sulfur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO), and ozone (O3) at least 7 days before the diagnosis of COVID-19 affected the development of chemosensory dysfunction. In the logistic regression model adjusted for age, sex, standardized smoking rate, number of outpatient visits, and daily average temperature and relative humidity, it was found that an increase in the interquartile range of PM10, PM2.5, SO2, NO2, and CO on the day of diagnosis increased the incidence of chemosensory dysfunction 1.10, 1.10, 1.17, 1.31, and 1.19-fold, respectively. In contrast, the O3 concentration had a negative association with chemosensory dysfunction. CONCLUSION: High concentrations of air pollutants such as PM10, PM2.5, SO2, NO2, and CO on the day of diagnosis increased the risk of developing chemosensory dysfunction from COVID-19 infection. This result underscores the need to actively prevent exposure to air pollution and prevent COVID-19 infection. In addition, policies that regulate activities and products that create high amounts of harmful environmental wastes may help in promoting better health for all during COVID-19 pandemic.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , COVID-19 , Ozono , Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/análisis , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , COVID-19/complicaciones , COVID-19/epidemiología , Monóxido de Carbono/análisis , China/epidemiología , Humanos , Dióxido de Nitrógeno/efectos adversos , Dióxido de Nitrógeno/análisis , Ozono/efectos adversos , Ozono/análisis , Pandemias , Material Particulado/efectos adversos , Material Particulado/análisis , Dióxido de Azufre/efectos adversos , Dióxido de Azufre/análisis
4.
Sci Rep ; 12(1): 13317, 2022 08 03.
Artículo en Inglés | MEDLINE | ID: covidwho-1972659

RESUMEN

This paper investigates the air quality in 107 Italian provinces in the period 2014-2019 and the association between exposure to nine outdoor air pollutants and the COVID-19 spread and related mortality in the same areas. The methods used were negative binomial (NB) regression, ordinary least squares (OLS) model, and spatial autoregressive (SAR) model. The results showed that (i) common air pollutants-nitrogen dioxide (NO2), ozone (O3), and particulate matter (PM2.5 and PM10)-were highly and positively correlated with large firms, energy and gas consumption, public transports, and livestock sector; (ii) long-term exposure to NO2, PM2.5, PM10, benzene, benzo[a]pyrene (BaP), and cadmium (Cd) was positively and significantly correlated with the spread of COVID-19; and (iii) long-term exposure to NO2, O3, PM2.5, PM10, and arsenic (As) was positively and significantly correlated with COVID-19 related mortality. Specifically, particulate matter and Cd showed the most adverse effect on COVID-19 prevalence; while particulate matter and As showed the largest dangerous impact on excess mortality rate. The results were confirmed even after controlling for eighteen covariates and spatial effects. This outcome seems of interest because benzene, BaP, and heavy metals (As and Cd) have not been considered at all in recent literature. It also suggests the need for a national strategy to drive down air pollutant concentrations to cope better with potential future pandemics.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , COVID-19 , Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/análisis , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Benceno , COVID-19/epidemiología , Cadmio , Exposición a Riesgos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/análisis , Humanos , Dióxido de Nitrógeno/efectos adversos , Dióxido de Nitrógeno/análisis , Material Particulado/efectos adversos , Material Particulado/análisis
5.
CMAJ ; 194(20): E693-E700, 2022 05 24.
Artículo en Inglés | MEDLINE | ID: covidwho-1862287

RESUMEN

BACKGROUND: The tremendous global health burden related to COVID-19 means that identifying determinants of COVID-19 severity is important for prevention and intervention. We aimed to explore long-term exposure to ambient air pollution as a potential contributor to COVID-19 severity, given its known impact on the respiratory system. METHODS: We used a cohort of all people with confirmed SARS-CoV-2 infection, aged 20 years and older and not residing in a long-term care facility in Ontario, Canada, during 2020. We evaluated the association between long-term exposure to fine particulate matter (PM2.5), nitrogen dioxide (NO2) and ground-level ozone (O3), and risk of COVID-19-related hospital admission, intensive care unit (ICU) admission and death. We ascertained individuals' long-term exposures to each air pollutant based on their residence from 2015 to 2019. We used logistic regression and adjusted for confounders and selection bias using various individual and contextual covariates obtained through data linkage. RESULTS: Among the 151 105 people with confirmed SARS-CoV-2 infection in Ontario in 2020, we observed 8630 hospital admissions, 1912 ICU admissions and 2137 deaths related to COVID-19. For each interquartile range increase in exposure to PM2.5 (1.70 µg/m3), we estimated odds ratios of 1.06 (95% confidence interval [CI] 1.01-1.12), 1.09 (95% CI 0.98-1.21) and 1.00 (95% CI 0.90-1.11) for hospital admission, ICU admission and death, respectively. Estimates were smaller for NO2. We also estimated odds ratios of 1.15 (95% CI 1.06-1.23), 1.30 (95% CI 1.12-1.50) and 1.18 (95% CI 1.02-1.36) per interquartile range increase of 5.14 ppb in O3 for hospital admission, ICU admission and death, respectively. INTERPRETATION: Chronic exposure to air pollution may contribute to severe outcomes after SARS-CoV-2 infection, particularly exposure to O3.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , COVID-19 , Contaminantes Atmosféricos/efectos adversos , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , COVID-19/epidemiología , Estudios de Cohortes , Exposición a Riesgos Ambientales/efectos adversos , Humanos , Dióxido de Nitrógeno/efectos adversos , Dióxido de Nitrógeno/análisis , Ontario/epidemiología , Material Particulado/efectos adversos , Material Particulado/análisis , Estudios Prospectivos , SARS-CoV-2
6.
Am J Respir Crit Care Med ; 205(6): 651-662, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: covidwho-1562065

RESUMEN

Rationale: Risk factors for coronavirus disease (COVID-19) mortality may include environmental exposures such as air pollution. Objectives: To determine whether, among adults hospitalized with PCR-confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), long-term air pollution exposure is associated with the risk of mortality, ICU admission, or intubation. Methods: We performed a retrospective analysis of SARS-CoV-2 PCR-positive patients admitted to seven New York City hospitals from March 8, 2020, to August 30, 2020. The primary outcome was mortality; secondary outcomes were ICU admission and intubation. We estimated the annual average fine particulate matter (particulate matter ⩽2.5 µm in aerodynamic diameter [PM2.5]), nitrogen dioxide (NO2), and black carbon (BC) concentrations at patients' residential address. We employed double robust Poisson regression to analyze associations between the annual average PM2.5, NO2, and BC exposure level and COVID-19 outcomes, adjusting for age, sex, race or ethnicity, hospital, insurance, and the time from the onset of the pandemic. Results: Among the 6,542 patients, 41% were female and the median age was 65 (interquartile range, 53-77) years. Over 50% self-identified as a person of color (n = 1,687 [26%] Hispanic patients; n = 1,659 [25%] Black patients). Air pollution exposure levels were generally low. Overall, 31% (n = 2,044) of the cohort died, 19% (n = 1,237) were admitted to the ICU, and 16% (n = 1,051) were intubated. In multivariable models, a higher level of long-term exposure to PM2.5 was associated with an increased risk of mortality (risk ratio, 1.11 [95% confidence interval, 1.02-1.21] per 1-µg/m3 increase in PM2.5) and ICU admission (risk ratio, 1.13 [95% confidence interval, 1.00-1.28] per 1-µg/m3 increase in PM2.5). In multivariable models, neither NO2 nor BC exposure was associated with COVID-19 mortality, ICU admission, or intubation. Conclusions: Among patients hospitalized with COVID-19, a higher long-term PM2.5 exposure level was associated with an increased risk of mortality and ICU admission.


Asunto(s)
Contaminación del Aire/efectos adversos , COVID-19/epidemiología , Exposición a Riesgos Ambientales/efectos adversos , Adulto , Anciano , COVID-19/diagnóstico , COVID-19/terapia , Carbono/efectos adversos , Cuidados Críticos , Femenino , Hospitalización , Humanos , Intubación Intratraqueal , Masculino , Persona de Mediana Edad , Ciudad de Nueva York , Dióxido de Nitrógeno/efectos adversos , Material Particulado/efectos adversos , Respiración Artificial , Estudios Retrospectivos , Factores de Riesgo , Factores de Tiempo
7.
Environ Health ; 20(1): 41, 2021 04 10.
Artículo en Inglés | MEDLINE | ID: covidwho-1175326

RESUMEN

BACKGROUND: Air pollution is one of the world's leading mortality risk factors contributing to seven million deaths annually. COVID-19 pandemic has claimed about one million deaths in less than a year. However, it is unclear whether exposure to acute and chronic air pollution influences the COVID-19 epidemiologic curve. METHODS: We searched for relevant studies listed in six electronic databases between December 2019 and September 2020. We applied no language or publication status limits. Studies presented as original articles, studies that assessed risk, incidence, prevalence, or lethality of COVID-19 in relation with exposure to either short-term or long-term exposure to ambient air pollution were included. All patients regardless of age, sex and location diagnosed as having COVID-19 of any severity were taken into consideration. We synthesised results using harvest plots based on effect direction. RESULTS: Included studies were cross-sectional (n = 10), retrospective cohorts (n = 9), ecological (n = 6 of which two were time-series) and hypothesis (n = 1). Of these studies, 52 and 48% assessed the effect of short-term and long-term pollutant exposure, respectively and one evaluated both. Pollutants mostly studied were PM2.5 (64%), NO2 (50%), PM10 (43%) and O3 (29%) for acute effects and PM2.5 (85%), NO2 (39%) and O3 (23%) then PM10 (15%) for chronic effects. Most assessed COVID-19 outcomes were incidence and mortality rate. Acutely, pollutants independently associated with COVID-19 incidence and mortality were first PM2.5 then PM10, NO2 and O3 (only for incident cases). Chronically, similar relationships were found for PM2.5 and NO2. High overall risk of bias judgments (86 and 39% in short-term and long-term exposure studies, respectively) was predominantly due to a failure to adjust aggregated data for important confounders, and to a lesser extent because of a lack of comparative analysis. CONCLUSION: The body of evidence indicates that both acute and chronic exposure to air pollution can affect COVID-19 epidemiology. The evidence is unclear for acute exposure due to a higher level of bias in existing studies as compared to moderate evidence with chronic exposure. Public health interventions that help minimize anthropogenic pollutant source and socio-economic injustice/disparities may reduce the planetary threat posed by both COVID-19 and air pollution pandemics.


Asunto(s)
Contaminantes Atmosféricos/efectos adversos , Contaminación del Aire/efectos adversos , COVID-19/epidemiología , COVID-19/mortalidad , Exposición a Riesgos Ambientales/efectos adversos , Humanos , Incidencia , Dióxido de Nitrógeno/efectos adversos , Ozono/efectos adversos , Material Particulado/efectos adversos , Prevalencia , Pronóstico , Dióxido de Azufre/efectos adversos
8.
Curr Biol ; 31(4): R161-R163, 2021 Feb 22.
Artículo en Inglés | MEDLINE | ID: covidwho-1163604

RESUMEN

Air pollution kills many more people every year than COVID-19 has in its first year but is receiving less attention. India is facing a pollution crisis from multiple sources, while European cities have mainly their motor vehicles to blame. Mounting evidence suggests that particle pollution may harm every organ of the body. Michael Gross reports.


Asunto(s)
Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Monitoreo del Ambiente , Material Particulado/efectos adversos , Material Particulado/análisis , Bélgica , COVID-19/epidemiología , Ciudades , Monitoreo del Ambiente/métodos , Europa (Continente) , Energía Geotérmica , Humanos , Islandia , India , Vehículos a Motor , Dióxido de Nitrógeno/efectos adversos
9.
Int J Environ Res Public Health ; 17(24)2020 12 13.
Artículo en Inglés | MEDLINE | ID: covidwho-1011476

RESUMEN

The COVID-19 outbreak disproportionately affected the elderly and areas with higher population density. Among the multiple factors possibly involved, a role for air pollution has also been hypothesized. This nationwide observational study demonstrated the significant positive relationship between COVID-19 incidence rates and PM2.5 and NO2 levels in Italy, both considering the period 2016-2020 and the months of the epidemic, through univariate regression models, after logarithmic transformation of the variables, as the data were not normally distributed. That relationship was confirmed by a multivariate analysis showing the combined effect of the two pollutants, adjusted for the old-age index and population density. An increase in PM2.5 and NO2 concentrations by one unit (1 µg/m3) corresponded to an increase in incidence rates of 1.56 and 1.24 × 104 people, respectively, taking into account the average levels of air pollutants in the period 2016-2020, and 2.79 and 1.24 × 104 people during March-May 2020. Considering the entire epidemic period (March-October 2020), these increases were 1.05 and 1.01 × 104 people, respectively, and could explain 59% of the variance in COVID-19 incidence rates (R2 = 0.59). This evidence could support the implementation of targeted responses by focusing on areas with low air quality to mitigate the spread of the disease.


Asunto(s)
Contaminación del Aire/efectos adversos , COVID-19/epidemiología , Dióxido de Nitrógeno/efectos adversos , Material Particulado/efectos adversos , Contaminación del Aire/análisis , Exposición a Riesgos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/análisis , Humanos , Incidencia , Italia/epidemiología , Dióxido de Nitrógeno/análisis , Material Particulado/análisis , Estudios Retrospectivos
10.
Front Public Health ; 8: 580057, 2020.
Artículo en Inglés | MEDLINE | ID: covidwho-979056

RESUMEN

The outbreak of COVID-19 has created a serious public health concern worldwide. Although, most of the regions around the globe have been affected by COVID-19 infections; some regions are more badly affected in terms of infections and fatality rates than others. The exact reasons for such variations are not clear yet. This review discussed the possible effects of air pollution on COVID-19 infections and mortality based on some recent evidence. The findings of most studies reviewed here demonstrate that both short-term and long-term exposure to air pollution especially PM2.5 and nitrogen dioxide (NO2) may contribute significantly to higher rates of COVID-19 infections and mortalities with a lesser extent also PM10. A significant correlation has been found between air pollution and COVID-19 infections and mortality in some countries in the world. The available data also indicate that exposure to air pollution may influence COVID-19 transmission. Moreover, exposure to air pollution may increase vulnerability and have harmful effects on the prognosis of patients affected by COVID-19 infections. Further research should be conducted considering some potential confounders such as age and pre-existing medical conditions along with exposure to NO2, PM2.5 and other air pollutants to confirm their detrimental effects on mortalities from COVID-19.


Asunto(s)
Contaminantes Atmosféricos/efectos adversos , Contaminación del Aire/efectos adversos , COVID-19 , Exposición a Riesgos Ambientales/efectos adversos , COVID-19/epidemiología , COVID-19/mortalidad , Humanos , Dióxido de Nitrógeno/efectos adversos , Material Particulado/efectos adversos , Salud Pública , SARS-CoV-2/aislamiento & purificación
11.
Pediatr Allergy Immunol ; 31 Suppl 26: 26-28, 2020 11.
Artículo en Inglés | MEDLINE | ID: covidwho-944772

RESUMEN

Respiratory allergies are known to affect people all over the world. Environmental factors related to pollution play a significant etiopathogenic role in this regard. Polluting sources are industrial activities and urban traffic, capable of generating various types of pollutants that trigger inflammatory, direct, and indirect damage to tissues, promoting allergic symptoms, even serious ones, and interfering with the pharmacologic response. They are also able to modify pollen, promoting allergic sensitization. Pollution could have played a significant predisposing role in the ongoing morbidity and mortality of SARS-CoV-2.


Asunto(s)
Contaminación del Aire/efectos adversos , COVID-19/epidemiología , Hipersensibilidad Respiratoria/etiología , SARS-CoV-2 , Niño , Humanos , Dióxido de Nitrógeno/efectos adversos , Ozono/efectos adversos , Material Particulado/efectos adversos
12.
Int J Infect Dis ; 97: 278-282, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: covidwho-459551

RESUMEN

OBJECTIVES: Although COVID-19 is known to be caused by human-to-human transmission, it remains largely unclear whether ambient air pollutants and meteorological parameters could promote its transmission. METHODS: A retrospective study was conducted to study whether air quality index (AQI), four ambient air pollutants (PM2.5, PM10, NO2 and CO) and five meteorological variables (daily temperature, highest temperature, lowest temperature, temperature difference and sunshine duration) could increase COVID-19 incidence in Wuhan and XiaoGan between Jan 26th to Feb 29th in 2020. RESULTS: First, a significant correlation was found between COVID-19 incidence and AQI in both Wuhan (R2=0.13, p<0.05) and XiaoGan (R2=0.223, p<0.01). Specifically, among four pollutants, COVID-19 incidence was prominently correlated with PM2.5 and NO2 in both cities. In Wuhan, the tightest correlation was observed between NO2 and COVID-19 incidence (R2=0.329, p<0.01). In XiaoGan, in addition to the PM2.5 (R2=0.117, p<0.01) and NO2 (R2=0.015, p<0.05), a notable correlation was also observed between the PM10 and COVID-19 incidence (R2=0.105, p<0.05). Moreover, temperature is the only meteorological parameter that constantly correlated well with COVID-19 incidence in both Wuhan and XiaoGan, but in an inverse correlation (p<0.05). CONCLUSIONS: AQI, PM2.5, NO2, and temperature are four variables that could promote the sustained transmission of COVID-19.


Asunto(s)
Contaminación del Aire/efectos adversos , Infecciones por Coronavirus/epidemiología , Neumonía Viral/epidemiología , Temperatura , Betacoronavirus , COVID-19 , Monóxido de Carbono/efectos adversos , China/epidemiología , Ciudades , Infecciones por Coronavirus/transmisión , Humanos , Incidencia , Dióxido de Nitrógeno/efectos adversos , Pandemias , Material Particulado/efectos adversos , Neumonía Viral/transmisión , Estudios Retrospectivos , SARS-CoV-2
13.
J Infect ; 81(2): 255-259, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: covidwho-355067

RESUMEN

OBJECTIVES: In areas of SARS-CoV-2 outbreak worldwide mean air pollutants concentrations vastly exceed the maximum limits. Chronic exposure to air pollutants have been associated with lung ACE-2 over-expression which is known to be the main receptor for SARS-CoV-2. The aim of this study was to analyse the relationship between air pollutants concentration (PM 2.5 and NO2) and COVID-19 outbreak, in terms of transmission, number of patients, severity of presentation and number of deaths. METHODS: COVID-19 cases, ICU admissions and mortality rate were correlated with severity of air pollution in the Italian regions. RESULTS: The highest number of COVID-19 cases were recorded in the most polluted regions with patients presenting with more severe forms of the disease requiring ICU admission. In these regions, mortality was two-fold higher than the other regions. CONCLUSIONS: From the data available we propose a "double-hit hypothesis": chronic exposure to PM 2.5 causes alveolar ACE-2 receptor overexpression. This may increase viral load in patients exposed to pollutants in turn depleting ACE-2 receptors and impairing host defences. High atmospheric NO2 may provide a second hit causing a severe form of SARS-CoV-2 in ACE-2 depleted lungs resulting in a worse outcome.


Asunto(s)
Contaminación del Aire/efectos adversos , Betacoronavirus , Infecciones por Coronavirus/mortalidad , Neumonía Viral/mortalidad , Contaminantes Atmosféricos/efectos adversos , Contaminación del Aire/estadística & datos numéricos , COVID-19 , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/etiología , Brotes de Enfermedades/estadística & datos numéricos , Hospitalización/estadística & datos numéricos , Humanos , Unidades de Cuidados Intensivos/estadística & datos numéricos , Italia/epidemiología , Dióxido de Nitrógeno/efectos adversos , Pandemias , Material Particulado/efectos adversos , Neumonía Viral/epidemiología , Neumonía Viral/etiología , Factores de Riesgo , SARS-CoV-2 , Índice de Severidad de la Enfermedad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA